Bulbs for year-round...

...Interest!
Come visit the Gardens!
For all ages!
Enjoy our Homesteaders (Saw Whet Owl)
The Cook’s Market
Farm Market Structure
And walk, see and enjoy. Help sustain Our beauty be becoming a Member today!
Always Good to Know the Plant — and it varies by the Bulb!

1. Preferred Soil Conditions – Type of soils – gravely vs. sandy vs. silty vs. clay.

2. Sun exposure – Full sun vs. shade. If in shade, is it cast by a tree or building.

3. Maritime, prairie or mountainous. A maritime location has a higher atmospheric humidity and the plants may need protection – especially during the winter months – if located in a dry, windy location.

4. Wind exposure – Related to the native range and location of that plant. Directly correlates with 3.

5. Elevation – Location along the terrain (top of slope vs. bottom). Relates to the ability of the plant to be tolerant of frost pockets, wind, sun, drought, etc.
What are geophytes?

Geophytes are non-woody flowering plants with an underground storage organ. These storage organs contain reserves of carbohydrates, nutrients, and water, and may be classified as bulbs, corms, tubers, rhizomes, and tuberous roots. Storage organs evolved as a mechanism for plant survival during harsh environmental conditions such as hot, dry summers. Geophytes that naturalize will adapt and reproduce to a site as they would in their native habitat. Longwood gardeners have been naturalizing many small geophytes throughout the Gardens that bloom in late winter to early spring.

Crocus
Crocus chrysanthus 'Blue Pearl'

Tubergen Squill
Scilla mischtschenkoana

Siberian Squill
Scilla siberica

Glory-of-the-Snow
Chionodoxa luciliae 'Alba'

For more information please visit
www.longwoodgardens.org
keyword: geophytes.
Geophytes (Bulbs)

- Well-drained soil is essential for most, with the exception of a few, such as *Camassia* and *Narcissus*, which can tolerate seasonally high water tables.
- Plants need exposure to full sun during the growing season. *Cyclamen hederifolium* and *Cyclamen coum* are two exceptions, preferring shade.
- Allow the foliage to become totally dormant or brown before removing. Typically, the foliage looks very unattractive in the garden during this period, but it is necessary to allow the foliage to remain, as it producing the carbohydrates to ensure a sufficiently large bulb for next years bloom!
- Bulbs should be planted to a depth of 3X their diameter. If the bulb was planted too shallow, it will typically produce foliage but fail to bloom. This is typically a problem with Narcissus, Alliums and other large bulbs – the person planting the bulbs simply becomes tired! At shallow depths, the plants produce a huge number of offsets that are not sufficiently large to produce flowers. After the plant has gone dormant, dig and replant the bulbs at the proper depth.
Crocus tommasinianus
White
Allium ‘Mt. Everest’
Galanthus nivalis ‘Flora Plena’
Galtonia candicans
Gladiolus murielae
Hymenocallis occidentalis var. occidentalis
Leucojum aestivum ‘Gravetye Giant’
Yellow
Eranthis hyemalis
Eranthis hyemalis
Eranthis cilicica
Erythronium americanum
Erythronium 'Pagoda'
Orange
Lilium canadense
Red
Arum italicum
Arum italicum
Purple
Allium aflatunense
Allium ‘Gladiator’
Allium aflatunense
Allium christophii
Allium sphaerocephalon
Bulbocodium vernum
Colchicum ‘The Giant’
Colchicum cilicicum ‘Purpureum’
Colchicum ‘Waterlily’
Cyclamen hederifolium
Gladiolus communis subsp. byzantinus
Lycoris squamigera
Blue
Chionodoxa luciliae
Crocus chrysanthus ‘Blue Pearl’
Crocus tommasinianus
Crocus speciosus
Ipheion uniflorum
Muscari armeniacum
Muscari latifolium
Muscari latifolium
Puschkinia scilloides
Hyacinthoides hispanica

Scilla hispanica
Hyacinthoides hispanica ‘Alba’
Scilla siberica
Narcissus bulbocodium
Narcissus 'February Gold'
Narcissus ‘Thalia’
Narcissus 'Actaea'
Tulipa ‘Little Princess’
Tulipa tarda
Yet, the best flower of them all still remains...
.... my daughter, of course!
Lachenalia aloides var. quadricolor
Lachenalia aloides var. aurea
First... A Story
Devonian 419-358 MYA (Average O_2 levels at 15% vs today’s 21%)
Cretaceous Period – 145-66 MYA
(O₂ at 16%)